Page 116 - Math Course 2 (Book 2)
P. 116

Perpendicular and Angle Bisectors




         THEOREM 10.6                                                               Incenter Theorem


         The incenter  of a triangle is equidistant                        A
         from each side of the triangle.                                            R

         Example    If K is the incenter of △ABC, then                  P               E
                    KP = KQ = KR.                                      F           K
                                                          incenter                D

                                                                      B         Q                   C




         Key Concept


         Special Segments in Triangles



                      Name                             Type                    Type of Concurrency

             perpendicular bisector            line, segment, or ray               circumcenter

                 angle bisector                line, segment, or ray                 incenter

                     median                          segment                         centroid

                     altitude                        segment                       orthocenter


                                                            Proof:
                      Let’s Begin                           Statements               Reasons


                                                            1. m∠F = 80, m∠E = 30,    Given
                                                               and DG bisects ∠EDF
        Use Angle Bisectors
                                                            2. m∠EDF + m∠E + m∠F     Angle Sum Theorem
                                                                = 180
            Example

                                                            3. m∠EDF + 30 + 80 = 180  Substitution
         Given:   m∠F = 80 and m∠E = 30 DG bisects ∠EDF
         Prove:   m∠DGE = 115                               4. m∠EDF = 180–110 = 70  Subtraction Property


                 F                                          5. m∠GDE = 35            Definition of angle
                                                                                     bisector
                    80°         G
                                                            6. m∠GDE + m∠E +         Angle Sum Theorem
                                                                m∠DGE = 180


                                           30°              7. 35 + 30 + m∠DGE = 180  Substitution
            D                                       E

                                                            8. m∠DGE = 180–65 = 115 Subtraction Property







    108
   111   112   113   114   115   116   117   118   119   120   121