Page 117 - Math Course 2 (Book 2)
P. 117

Perpendicular and Angle Bisectors





                Your Turn!


               Use Angle Bisectors

                 Provide the missing reason in the following proof.  Proof:
                                                                  Statements                Reasons
                 Given:  m∠B = 66 and m∠C = 50 AD bisects ∠BAC.
                 Prove:  m∠ADC = 98                               1. m∠B = 66 and m∠C =50    Given
                                                                      AD bisects ∠BAC.
                             A
                                                                  2. m∠BAC + m∠B + m∠C      Angle Sum Theorem
                                                                      = 180


                                                                  3. m∠BAC + 66 + 50 = 180  Substitution



                      66°                     50°                 4. m∠BAC = 180–116 = 60 Subtraction Property
                  B                D                   C


                 A. isosceles triangle                            5. m∠DAC = 32             5.
                 B. Subtraction Property
                 C. substitution                                  6. m∠DAC + m∠C +
                 D. definition of angle bisector                      m∠DAC = 180           Angle Sum Theorem



                   Answer                                         7. 32 + 50 + m∠ADC = 180 Substitution


                                                                  8. m∠ADC = 180–82 = 98    Subtraction Property




                 MO. 10 - L1b

                   Identify and Use Medians in
                                 Triangles




                            Vocabulary A-Z                        centroid

                            Let us learn some vocabulary          The three medians meet in the centroid or center
                                                                  of mass (center of gravity or point of balance). The
                                                                  centroid divides each median in a ratio of 2:1
                median
                the lines drawn from the vertices to the bisectors           centroid                A
                of the opposite sides.
                                                  A





                                                                    B
                  B                                                                                      C


                                                       C

                                                                                                                 109
   112   113   114   115   116   117   118   119   120   121   122